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A bound for the pressure integral in a toroidal-plasma equilibrium has been studied, invoking an a
priori estimate for a solution of the Grad-Shafranov equation. Earlier theories had to use approximate
equilibrium solutions to calculate the pressure integral (poloidal beta ratio B,), and, hence, fell short of
being rigorous estimates. The present theory considers exact solutions and gives a rigorous bound

for 3,.

PACS number(s): 52.30.Bt, 02.30.—f, 52.55.Fa, 52.55.Dy

I. INTRODUCTION

In a magnetohydrodynamic equilibrium of a plasma,
the thermal pressure force Vp is balanced by the magnet-
ic stress jXB, where B is the magnetic flux density,
i=V XB/u, is the current density in the plasma, and p,
is the vacuum permeability. The plasma equilibrium
equation Vp=jXB thus relates the pressure and the
current. In this paper we study the maximum of the po-
loidal 8 ratio, which is defined by

Bp=87rfﬂp dx /(T )

where dx is the surface element, the integral is taken over
the cross section ) of the axisymmetric toroidal plasma
(tokamak), and J is the toroidal current (total current
passing through ). Recently high-B, tokamaks have at-
tracted much interest because they have many advanta-
geous features for a fusion core [1]. Limitation of B, can
occur because of nonexistence of equilibrium solutions, as
well as onset of instabilities [2]. The former is called the
equilibrium limit, while the latter is the stability limit.
Discussions on the equilibrium limit have a history of
confusion. By simplified analytic calculations using ap-
proximate equilibrium solutions, one observes a bound
B, <0(e™ 1), which is determined by formation of a
separatrix [3]; see also [4] and [5]. Here e=a /R, R is the
major radius, and a is the minor radius of the toroid. The
flux-conserving tokamak (FCT) theory, however, predict-
ed that B, has no bound determined by a separatrix [6].
The FCT concept has been also applied to numerical
analyses, and solutions with relatively high 3, have been
obtained [7]. When one attempts to increase 3, further,
however, a limitation occurs since the convergence of the
scheme becomes difficult in the high-3, regime. When Bp
is increased, the flux surfaces are strongly deformed to
shift toward the outer edge of the toroid, and the plasma
pressure and the current are concentrated into a crescent
shape around the outer edge [7]. It has been an open
question whether the limitation of the convergence is due
to a technical problem of generating meshes or due to the
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‘“‘absence” of solutions. The analytic estimate of the FCT
theory [6] assumes circular cross-section flux surfaces, so
it requires an appropriate correction to account for
strong deformations of flux surfaces in high-B, solutions.
This paper addresses to this critical problem, and derives
a rigorous bound for S3,,.

The mathematical technique used here is the so-called
a priori estimate. We do not invoke any approximation
or expansion for solutions, while we discuss exact solu-
tions of the basic equation. We construct inequalities
which every solution should satisfy in an a priori sense.

II. THE GRAD-SHAFRANOV EQUATION

A tokamak equilibrium (an axisymmetric plasma equi-
librium) is represented by a flux function ¥ which solves
the Grad-Shafranov equation (for example, see [4])

AV=rP'(¥)+r 'F(V)F'(¥) (in Q), (1)
¥=0 (on 3Q), ()

where AW=—9,(r '3,%)—r '32¥ in the r-z coordi-
nates, and the cross section () of the toroid is a simply
connected bounded domain in RTXR with a smooth
boundary 3Q). The boundary condition (2) implies a per-
fectly conductive wall. We note that j = AY /u, parallels
the toroidal current density, P =uyp, and F =rB¢, where
B, is the toroidal magnetic field. In (1), P and F are com-
posite functions of ¥. To avoid exceedingly mathemati-
cal arguments, we consider smooth functions P and F, to
warrant smoothness of W. We have denoted
P'(s)=dP(s)/ds for P(s): R—R. For simplicity, we as-
sume

P20, P(0)=0. (3)

Therefore, the pressure peaks at the magnetic axis (the
peak of W) and vanishes on 8Q). We choose the sign of
the current J positive, and assume ¥ =0 in Q.

An essential condition for ¥ to be a permissible solu-
tion is that ¥ does not have a separatrix in Q [4,6]. For-
mally this condition reads as follows. We denote by D (s)
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the domain on which ¥>s. The boundary of D (s) is
denoted by L(s), which is the level set of
V=s (0<s <max¥). Then, every L (s) should be a sim-
ple closed loop in 2, and

—n-V¥=|V¥|>0 on everyL (s), (4)

where n is the outward normal vector on L (s).

III. A BOUND FOR THE PRESSURE INTEGRAL

Before studying the pressure integral in a tokamak
equilibrium, we concisely survey related theories. For a
circular cross section straight z-pinch plasma column (cy-
lindrical plasma with j in the longitudinal direction), we
have Bennett’s pinch relation B, =1, which holds for
every profile of the pressure; see, e.g., [5]. For a general
shape of cross section, one finds 8, <1. This relation is
expectable, since any deformation of the cross section
leads to a stretch of the poloidal magnetic-field lines re-
sulting in a decrease in the magnetic stress. Although a
rigorous proof of Bp =1 is not found in the literature of
plasma physics, the Payne-Rayner inequality [8], which
was developed for the fixed membrane problem in solid
mechanics, applies to this proof. When a longitudinal
magnetic field is imposed on a straight plasma column, a
poloidal current yields an additional magnetic stress, and
the plasma pressure can be increased infinitely without
changing longitudinal current. Therefore, B, is unbound-
ed in a straight tokamak. A limitation of B,, however,
can arise from the toroidal curvature effect. In this sec-
tion, we derive a bound for B, in a toroidal equilibrium
with a toroidal (longitudinal) magnetic field applying the
method of the Payne-Rayner inequality. A stronger
bound results from limiting the rotational transform,
which will be discussed in the next section.

Theorem 1. Suppose that P satisfies (3). Let ¥ (>0)
be a smooth function in Q satisfying (2) and (4). Then,
one finds

I,I,R,

4R, ’ )

J pwax <

where I,, =max (s),
I(s)= v I,= -P’ s
()= [, AYdx, I;=[ rP'(¥)dx

R, =minr and R, =maxr in Q, respectively.
Proof. The proof is similar to that of the Payne-Rayner
inequality [8]. We denote

= dx , Hs)= P (Y .
olo)=[, ax, d)=[ P(¥dx
We observe
"(s)=— v¥|~l4dr,
o'(s) J.L(s)| l

where dTI is the line element on L (s).
tegrate (1) over D (s) to obtain

AV ds= “llyyldr>R ! v|dl .
fD(s) s fL(s)r v ! fLmlvl

Using (4), in-

(6)
Multiply —P’c’=—3¢' [ 20 by (3)] on both sides of (6) to
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obtain

—R, (), > —Rlﬁ'(s)fm AV dx 2 47P'(5)o(s) .

@)

Here we have used the following isoperimetric inequality:
vidIl V| ldr> ar
fL(s)‘V ‘ fL(s)l ‘ fL(s)

Integrating (7) with respect to s over (0, maxW¥) yields

2
Z47o(s) .

R
41TfnP deRllmﬂ(O)S—E‘—ImIP ) Q.E.D.

0

Estimate (5) reads as B3 SZ(RII,,,IP)/(ROIZ), where
I=1(0)=puyJ. From now on we assume that ¥ solves (1)
and (2). If the force-free current » ~'FF'/u, is positive,
I,<I, and I, <I by (3), and hence 8, <2R,/R,. To
achieve a larger 3, r “1FF’ /u, should be allowed nega-
tive. In a high-B, equilibrium, the toroidal diamagnetism
enhances the pressure, and hence r ~'FF' /u, tends to be
negative. Because |r 'FF’| is large on the inner side,
while rP’ is large on the outer side, a negative current re-
gion can develop on the inner side of the toroid. This is
known as the Pfirsh-Schliiter current (for example, see

[5]).
IV. FCT EQUILIBRIA

In what follows we derive a bound for the negative
current considering an additional restriction on the safety
factor g(¥). This restriction on q is relevant to the FCT
set of equilibria [6,7]. The safety factor is given by

_ Fls) —1 —1
g(s)==— fm)r |vw|~ldr . @)

We consider a set of equilibria such that
0<g(s)=g,, , 0<s=<maxV¥ . 9)

To simplify estimates, we also assume that F'(s) does not
change the sign. Since g >0, we observe F >0, so we
should assume, for high Bys

F'=0. (10)

Theorem 2. Suppose that P satisfies (3), and that F
satisfies (10). Let ¥ be a smooth solution of (1) and (2),
which satisfies (4) and (9). Then, one finds an a priori
bound for By:

2
anRi

R,
20(0)R,

<
By(¥) =24

1+ (11)

Proof. By (8) and (9), we observe
—F(s5)o'(s)SF(s)R, [ r~'|V¥|"'dT <27Rq,, .
L(s)

Using this relation and (10), we obtain

—Ip== [ r T FWF(W)dx <R [F(9)F ()0 (s)ds

R R
5—2ﬂqmi¢‘fF'(s)dsszﬂqu—;F(0). (12)
0
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The isoperimetric inequality yields

aro(O<R}[ r7lveldr [ r7lvy|"ldT
L(0) L(0)

=R¥ [ r7Yve|7ldr. (13)
L(0)
Using (8) and (13), we obtain
g, RII
< “lyy|Tdr<-—"——. (14
FO)S2mq, /[ r7IVYITWTS 00 (4

Combine (5), (12), (14), I,=1—1I;, and I,, =I—1I; to ob-
tain (11) Q.E.D.

V. SUMMARY AND DISCUSSION

In summary we have derived rigorous bounds for the
pressure integral in an axisymmetric plasma equilibrium.
Theorem 1 is an extension of the Payne-Rayner inequali-
ty to the toroidal problem with the additional force-free
current term » ~'FF’. Theorem 2 gives an explicit bound
for a specific set of FCT equilibria showing that B, is
bounded by a number that is a function of g,, and the
geometry. We note that o(0) represents the area of ().
Our estimate (11) may be improved by excluding extraor-
dinary configurations. For example, when we assume
that the flux-surface average of the current density
should be positive, then I,, =1, and hence we have

gL R3

1+—m Ll
20(0)R,

(¥ <2R‘
By(W) =24

On the other hand, if we allow F' to change the sign n
times (n = 1), we should modify (12) to a complicated
form. A crude estimate is given by multiplying by n the
bound of (11). This pushes the bound up, while it is un-
likely to have a large n.

Another important question is the relation between S,
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and the shape of an equilibrium solution. Previous
theories used an asymptotic parameter € (inverse aspect
ratio), indicating that €8, <O (1) even if ¢ is unbounded.
The FCT model of Clarke and Sigmar [6] estimates
eBp~(ﬁ/e)”3, where 3=2,uofﬂp dx /ande. In these
models, an equilibrium is approximated by a circular lev-
el set ¥, and € is defined by the outermost magnetic sur-
face. As is well known by numerical analyses, a high-B,
equilibrium has a narrow confinement region localized at
the outer edge of the toroid. Therefore the definition of €
becomes difficult for general high-B, equilibria. One
might expect that B, is bounded by a number that is a
function of only the shape of the boundary 9(), instead of
the solution. Cowley et al. [9] used asymptotic methods
assuming boundary-layer types of equilibria instead of
circular level-set equilibria, and interesting estimates of
the pressure integral were obtained. Our general result
(11) is weaker than those heuristic arguments, while it is
on a rigorous mathematical basis. We can define an ap-
propriate scale length of the confinement region (not the
boundary of the domain), and define an effective aspect
ratio 1/€* of the solution. Then we obtain an estimate
€*B, =2. Such detailed analyses will be discussed else-
where.
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